Abstract
Motexafin gadolinium (MGd, Xcytrin) is a tumor-localizing redox mediator that catalyzes the oxidation of intracellular reducing molecules including NADPH, ascorbate, protein and non-protein thiols, generating reactive oxygen species (ROS). MGd localizes to tumors and cooperates with radiation and chemotherapy to kill tumor cells in tissue culture and animal models. In this report, we demonstrate that MGd triggers the mitochondrial apoptotic pathway in the HF-1 lymphoma cell line as determined by loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, activation of caspase-9 prior to caspase-8, cleavage of PARP and annexin V binding. There was minimal effect on MGd-induced apoptosis by the caspase inhibitor z-VAD-fmk, even though caspase-3 activity (as measured by DEVD-cleavage) was completely inhibited. However, MGd-induced apoptosis was reduced to baseline levels by the more potent caspase inhibitor Q-VD-OPh, demonstrating that MGd-induced apoptosis is indeed caspase-dependent. Apoptosis induced by dexamethasone, doxorubicin and etoposide (mediated through the mitochondrial pathway) was also more sensitive to inhibition by Q-VD-OPh than z-VAD-fmk. Our results demonstrating differential sensitivity of drug-induced apoptosis to caspase inhibitors suggest that the term "caspase-independent apoptosis" cannot be solely defined as apoptosis that is not inhibited by z-VAD-fmk as has been utilized in some published studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.