Abstract

An exfoliated MoTe2 flake in contact with a ferroelectric single-crystal substrate was studied to examine its charge carrier modulation by neighboring ferroelectric polarization. A MoTe2 field-effect transistor was fabricated, having a hexagonal-BN (hBN) flake and a ferroelectric substrate employed as top and bottom gate dielectrics. In the dual-gate operation, the charge conduction exhibited an ambipolar behavior with large hysteresis during the gate voltage sweep. It mainly originates from the ferroelectric nature in combination with the charge trap phenomena at the interfaces. Interestingly, we found out that holes are more easily trapped than electrons, and charge carriers in MoTe2 are easily modulated through the top hBN gate when the electron conduction is predominantly set by the bottom ferroelectric field. However, the controllability becomes much weaker under opposing ferroelectric polarizations. This unbalanced controllability reveals the interfacial hole-trap effect resulting from ferroelectric polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.