Abstract

The Swi2/Snf2 family ATPase Mot1 displaces TATA-binding protein (TBP) from DNA in vitro, but the global relationship between Mot1 and TBP in vivo is unclear. In particular, how Mot1 activates transcription is poorly understood. To address these issues, we mapped the distribution of Mot1 and TBP on native chromatin at base pair resolution. Mot1 and TBP binding sites coincide throughout the genome, and depletion of TBP results in a global decrease in Mot1 binding. We find evidence that Mot1 approaches TBP from the upstream direction, consistent with its in vitro mode of action. Strikingly, inactivation of Mot1 leads to both increases and decreases in TBP-genome association. Sites of TBP gain tend to contain robust TATA boxes, while sites of TBP loss contain poly(dA-dT) tracts that may contribute to nucleosome exclusion. Sites of TBP gain are associated with increased gene expression, while decreased TBP binding is associated with reduced gene expression. We propose that the action of Mot1 is required to clear TBP from intrinsically preferred (TATA-containing) binding sites, ensuring sufficient soluble TBP to bind intrinsically disfavored (TATA-less) sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.