Abstract

The problem of inferring kinship structure among a sample of individuals using genetic markers is considered with the objective of developing hypothesis tests for genetic relatedness with nearly optimal properties. The class of tests considered are those that are constrained to be permutation invariant, which in this context defines tests whose properties do not depend on the labeling of the individuals. This is appropriate when all individuals are to be treated identically from a statistical point of view. The approach taken is to derive tests that are probably most powerful for a permutation invariant alternative hypothesis that is, in some sense, close to a null hypothesis of mutual independence. This is analagous to the locally most powerful test commonly used in parametric inference. Although the resulting test statistic is a U-statistic, normal approximation theory is found to be inapplicable because of high skewness. As an alternative it is found that a conditional procedure based on the most powerful test statistic can calculate accurate significance levels without much loss in power. Examples are given in which this type of test proves to be more powerful than a number of alternatives considered in the literature, including Queller and Goodknight's (1989) estimate of genetic relatedness, the average number of shared alleles (Blouin, 1996), and the number of feasible sibling triples (Almudevar and Field, 1999).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.