Abstract

Polysomaty was studied using flow cytometry in different organs of diploid, triploid and tetraploid sugar-beet (Beta vulgaris L.) plants, in the first (at harvest) and the second (at the height of the blooming period) year of development. Of the organs/parts of organs of the vegetative plant that developed during the first year, only the leaf lamina did not contain endopolyploid cells; in all others, one to three endocycles had occurred. The second-year seed-crop plant was also highly polysomatic; even in reproductive organs such as the flower and pericarp the endopolyploid cells were present (up to 8C and 32C, respectively). At this stage of development no endocycles occurred in the leaf lamina, flower bract, and inflorescence bract. The parts of the plant with no endopolyploid cells are recommended for ploidy estimation, and as a material suitable for micropropagation and genetic manipulations. Endoreduplication, up to 32C (64Cx), was organ-specific and correlated negatively with plant ploidy. The highest mean C-value, over 7, was in the diploid, in the basal part of the oldest leaf petiole in the first-year plant, and in the storage parenchyma of the root in the second-year seed-crop plant. The results confirm that higher endopolyploidy occurs in plants with a smaller 2C DNA amount than in those with a larger one. The significance of endopolyploidization in development of sugar-beet plant organs is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.