Abstract

ArF lithography has been successfully implemented for the development of sub-100nm DRAM devices. Such issues as CD (critical dimension) slimming during in-line SEM inspection and low dry etch resistance especially for SiN etch conditions, however, are still latent showstoppers for the production with ArF process. To overcome these problems, there are many efforts for continuous improvements in terms of material and process together with intensive study of new inspection tool and dry etch system. The curing process is one of promising candidates to stabilize the weak ArF resists. Many kinds of curing processes including e-beam curing, thermal curing, plasma curing, UV curing, and VUV (172nm) curing have been studied, and some of them have shown good effects until now. The new curing process with VUV (172nm) showed the most promising results. SEM induced CD slimming of ArF resist improved with 10 sec curing and D/E resistance highly increased with the curing. And there was no particle increase unlike e-beam curing process. And we also found that the re-flow of ArF resist with high T g above degradation temperature was possible with the VUV curing. In this paper, the mechanism and properties of VUV curing processes will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.