Abstract

Vegetation restoration often promotes the development of biological soil crusts (biocrusts), which have a significant role in the terrestrial nitrogen (N) cycle. However, biocrusts are not always considered when assessing soil N responses to restoration efforts, especially in subtropical regions. We assessed the effect of various restoration strategies on moss-dominated biocrust properties and soil N variables (0–5 cm topsoil and 5–10 cm sub-topsoil) in the subtropical karst region of southwestern China. Four restoration strategies were included: restoration with plantation forest, forage grass, and a combination of forest and grass, and spontaneous regeneration to natural grassland. Cropland under maize-soybean rotation (CR) was used as reference. The biocrust under combination restoration strategy had significantly higher biomass, saturated water adsorption ratio, and carbon content than did the other strategies; and the soil generally had the highest total N, ammonium, and microbial biomass carbon and N content but the lowest nitrate content. Redundancy analysis, variation partitioning, and stepwise multiple linear regression all indicated that biocrust properties play an important role in affecting soil N variables, especially in the topsoil. Vegetation restoration strategies that use various plant functional group assemblages, such as forest and grass, are preferable in enhancing the development of biocrusts and thus improving soil N properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call