Abstract

The study explored batch adsorption of Cd(II) and Pb(II) ions using moss biomass from Barbula consanguinea and Hyophila involuta, assessing removal efficiency concerning various parameters. Both moss species showed high removal rates for Cd(II) (87 % for B. consanguinea and 89 % for H. involuta) and Pb(II) (93 % for B. consanguinea and 94 % for H. involuta) from contaminated water, reaching equilibrium within 30 min. While Cd(II) removal was pH-independent, Pb(II) removal showed pH-dependence, peaking at pH 5.0–5.5. Adsorption isotherm analysis indicated that the Langmuir, Freundlich, Elovich, Sips, and Redlich-Peterson models best described Cd(II) and Pb(II) adsorption onto both moss species (except for Cd(II) adsorption onto H. involuta), with R2 > 0.98. This confirms a heterogeneous surface with both monolayer and multilayer adsorption sites. The pseudo-second-order kinetic model confirmed chemisorption on moss biomass from both species. FTIR spectra identified major binding sites such as phenols, alkaloids, amines, alkenes, nitro compounds, and low-molecular-weight carbohydrates. EDS analysis validated the bonding of Cd(II) and Pb(II) ions to the biomass surface by displacing Ca(II) ions. According to the Langmuir model, moss biomass exhibited selective adsorption, favoring Pb(II) over Cd(II). B. consanguinea showed a higher adsorption capacity than H. involuta, which is attributed to its higher negative zeta potential. This study underscores the novelty of moss biomass for heavy metal removal in wastewater treatment, highlighting its sustainability, effectiveness, cost-efficiency, versatility, and eco-friendliness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.