Abstract

Simple SummaryMosquitoes are vectors of many severe diseases, notably malaria, yellow as well as dengue fever, and lymphatic filariasis. Vector control with synthetic chemical insecticides has been associated with resistance development and undesirable human and ecological effects. Ocimum kilimandscharicum oil formulation was evaluated for larvicidal activity against third instar mosquito larvae in the laboratory. The formulation was then compared with Bacillus thuringiensis subsp. israelensis (Bti) granules on An. gambiae larvae under field-simulated field trials. The LC50 for O. kilimandscharicum oil after 24 h against third instar larvae of An. gambiae was 0.74 ppm while for the emulsified O. kilimandscharicum oil formulation against third instar larvae of An. gambiae and An. arabiensis was 0.07 and 0.31 ppm, respectively. The high bioactivity and sublethal toxic effects to offspring of treated mosquito larvae in terms of the disruption of larval morphological aspects suggest its high potential as a botanical larvicide for the control of disease vectors. The bioactive formulation had the advantage of high solubility in aqueous media; it is also easily produced, ecofriendly, and low-cost. Moreover, because O. kilimandscharicum can easily be widely cultivated and has high EO yields, it may provide a valuable alternative for the effective and eco-friendly control of disease vectors among developing and developed communities.Mosquitoes are vectors of many severe diseases, including malaria, yellow as well as dengue fever, and lymphatic filariasis. The use of synthetic chemical insecticides for mosquito control has been associated with resistance development and detrimental human, and ecological effects. For a safer alternative, the emulsified Ocimum kilimandscharicum oil formulation was evaluated for its larvicidal activity. The oil was analyzed by GC and GC/MS. The formulations were evaluated against third instar mosquito larvae in the laboratory and later compared with Bacillus thuringiensis subsp. israelensis against An. gambiae under field-simulated conditions. Thirty-nine compounds were identified in the oil, the main ones being D-camphor (36.6%) and limonene (18.6%). The formulation showed significant larval mortalities against An. gambiae and An. arabiensis larvae with LC50 of 0.07 and 0.31 ppm, respectively, at 24 h. Under the field-simulated trial, within 24 h, the formulation showed 98% mortality while Bti had achieved 54%. On day three, it caused 100% mortality while Bti achieved 76.5%. The high bioactivity and sublethal toxic effects to offspring of treated mosquito larvae, in terms of disruption of larval morphological aspects, suggest the high potential of the formulation as a botanical larvicide. The formulation, thus, may provide a valuable alternative for the effective and eco-friendly control of disease vectors.

Highlights

  • Mosquitoes act as vectors of numerous harmful human diseases prevalent in over100 tropical, subtropical, and other countries of the world [1,2]

  • The aerial parts of O. kilimandscharicum were collected from Isecheno Village, Kakamega

  • The environmental attributes, including location coordinates, were taken by a global positioning system (GPS) device, and a brief description of the plant sample was recorded in a notebook

Read more

Summary

Introduction

Mosquitoes act as vectors of numerous harmful human diseases prevalent in over100 tropical, subtropical, and other countries of the world [1,2]. Synthetic insecticides, including pyrethroids, organochlorine, organophosphate, and carbamate compounds, have been used as the main tools for mosquito control. These have had major disadvantages related to their harmful effects to the environment, humans, and other non-target organisms, as well as the loss of efficacy after repeated usage resulting from resistance to the insecticides [4,5,6,7]. Vector-borne diseases appear to be re-emerging, as observed in the last two decades [8] This has prompted the need for the identification of new ecofriendly and sustainable alternatives for their control. Natural phytochemical blends show resistance-mitigating effects over long periods [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call