Abstract

The mosquito-borne lymphatic filariasis (LF) is a parasitic, neglected tropical disease that imposes an unbearable human scourge. Despite the unprecedented efforts in mass drug administration (MDA) and morbidity management, achieving the global LF elimination slated for the year 2020 has been thwarted by limited MDA coverage and ineffectiveness in the chemotherapeutic intervention. Moreover, successful and sustainable elimination of mosquito-vectored diseases is often encumbered by reintroduction and resurgence emanating from human residual or new infections being widely disseminated by the vectors even when chemotherapy proves effective, but especially in the absence of effective vaccines. This created impetus for strengthening the current defective mosquito control approach, and profound research in vector–pathogen systems and vector biology has been pushing the boundaries of ideas towards developing refined vector-harnessed control strategies. Eventual implementation of these emerging concepts will offer a synergistic approach that will not only accelerate LF elimination, but also augurs well for its future eradication. This brief review focuses on advances in mosquito–filaria research and considers the emerging prospects for future eradication of LF.

Highlights

  • Mosquitoes are unambiguously the most important vectors of infectious disease-causing agents that tremendously affect global health, with over half of the global human population at risk of exposure to mosquito-transmitted infections [1] and more than 1 billion cases of such infections reported each year [2]

  • This review focuses on the advances in the area of mosquito–filaria research and promising vector-based research initiatives that may unclog future eradication of lymphatic filariasis (LF)

  • The current speed in the war against mosquito-transmitted diseases is moving with an increasing energy

Read more

Summary

Introduction

Mosquitoes are unambiguously the most important vectors of infectious disease-causing agents that tremendously affect global health, with over half of the global human population at risk of exposure to mosquito-transmitted infections [1] and more than 1 billion cases of such infections reported each year [2]. Global elimination of LF slated for the year 2020 is practically unattainable, as 22 of the current 52 endemic countries requiring MDA have not commenced MDA in all of their endemic implementation units, and the suboptimal human response to current regimens post-MDA has surfaced [10,14,15] The latter may have ensued due to the drug inactivity against adult worms [16] or inter- and intra-species variations causing a differential response to chemotherapy [17]; we cannot afford to overlook the possible emergence of drug-resistant microfilariae (mf) [18,19,20]. The application of insecticides has been largely buttressing mosquito control for many decades, toxicity to humans and emergence of insecticide-resistant traits among mosquito populations have been worrisome trends, and dampen the effectiveness of other control measures This implies that even in the face of the new MDA adjustments, there is still a need to recreate momentum for vector control, if the goal is achieving sustainable elimination that will lead to disease eradication.

The Mosquito–Filaria System
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.