Abstract

Recent years have seen the greatest ecological disturbances of our times, with global human expansion, species and habitat loss, climate change, and the emergence of new and previously-known infectious diseases. Biodiversity loss affects infectious disease risk by disrupting normal relationships between hosts and pathogens. Mosquito-borne pathogens respond to changing dynamics on multiple transmission levels and appear to increase in disturbed systems, yet current knowledge of mosquito diversity and the relative abundance of vectors as a function of habitat change is limited. We characterize mosquito communities across habitats with differing levels of anthropogenic ecological disturbance in central Thailand. During the 2008 rainy season, adult mosquito collections from 24 sites, representing 6 habitat types ranging from forest to urban, yielded 62,126 intact female mosquitoes (83,325 total mosquitoes) that were assigned to 109 taxa. Female mosquito abundance was highest in rice fields and lowest in forests. Diversity indices and rarefied species richness estimates indicate the mosquito fauna was more diverse in rural and less diverse in rice field habitats, while extrapolated estimates of true richness (Chao1 and ACE) indicated higher diversity in the forest and fragmented forest habitats and lower diversity in the urban. Culex sp. (Vishnui subgroup) was the most common taxon found overall and the most frequent in fragmented forest, rice field, rural, and suburban habitats. The distributions of species of medical importance differed significantly across habitat types and were always lowest in the intact, forest habitat. The relative abundance of key vector species, Aedes aegypti and Culex quinquefasciatus, was negatively correlated with diversity, suggesting that direct species interactions and/or habitat-mediated factors differentially affecting invasive disease vectors may be important mechanisms linking biodiversity loss to human health. Our results are an important first step for understanding the dynamics of mosquito vector distributions under changing environmental features across landscapes of Thailand.

Highlights

  • Our expanding and increasingly globalized human population has seen the emergence of new infectious diseases such as SARS and the resurgence of familiar diseases such as dengue and influenza to epidemic proportions

  • With recent global expansions of humans and vectors, new and recurring infectious diseases have emerged, often in epidemic proportions, and in some cases have been correlated with changes in the biodiversity of affected communities [2]

  • A hallmark of disturbed ecosystems includes the emergence of infectious diseases, which has been correlated with biodiversity loss [2,38]

Read more

Summary

Introduction

Our expanding and increasingly globalized human population has seen the emergence of new infectious diseases such as SARS and the resurgence of familiar diseases such as dengue and influenza to epidemic proportions. Changes in biodiversity have the potential to affect the risk of infectious diseases in a system by disrupting normal relationships between hosts and pathogens. Bonds et al [2] report that biodiversity loss is an important factor in the increase of vector-borne and parasitic diseases, which in turn have negative economic and human health impacts. This has been demonstrated experimentally with reduced infection intensities of the human parasite Schistsoma mansoni in diverse snail communities [3]. Anthropogenic changes have been linked to the recent emergence of certain infectious diseases [4,5].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call