Abstract

BackgroundMicrobial communities that inhabit the mosquito body play an import role in host biology and may have potential for mosquito control. However, the forces that shape these microbial communities are poorly understood.MethodsTo gain a better understanding of how host location influences the composition and diversity of mosquito microbiota, we performed a survey of microbial communities in mosquito samples collected from six USA states using HiSeq sequencing of the 16S rRNA gene.ResultsA total of 284 bacterial operational taxonomic units (OTUs) belonging to 14 phyla were detected in nine mosquito species, with Proteobacteria, Firmicutes and Actinobacteria accounting for 95% of total sequences. OTU richness varied markedly within and between mosquito species. The microbial composition and diversity was heavily influenced by the site of mosquito collection, suggesting that host location plays an important role in shaping the mosquito microbiota.ConclusionsVariation in microbial composition and diversity between mosquitoes from different locations may have important implications on vector competence and transmission dynamics of mosquito-borne pathogens. Future studies should investigate the environmental factors responsible for these variations and the role of key bacteria characterized in this study on mosquito biology and their potential application in symbiotic control of mosquito-borne diseases.

Highlights

  • Microbial communities that inhabit the mosquito body play an import role in host biology and may have potential for mosquito control

  • After quality filtering of bacterial operational taxonomic units (OTUs) accounting for less than 0.005% of the total sequences, and rarefaction at 1213 sequences per sample, 116 mosquito samples were retained across the six study sites yielding a total of 284 bacterial OTUs

  • The majority of OTUs occurred in a few samples with 217 of the 284 bacterial OTUs occurring in 10 or fewer mosquito samples, 94 of which occurred in a single mosquito (Additional file 1: Table S1)

Read more

Summary

Introduction

Microbial communities that inhabit the mosquito body play an import role in host biology and may have potential for mosquito control. Animals harbor diverse microbial communities which have profound effects on host health. These microorganisms can range from disease-causing to commensal and mutually beneficial microbes. Insects that feed on nutritionally deficient diets such as plant sap, woody materials and vertebrate blood, rely on obligate mutualistic microorganisms to degrade recalcitrant diet and to synthesize essential nutrients [2,3,4]. Tsetse flies and triatomine bugs are some of the well-studied insect systems with fascinating associations with microbial symbionts. The microbial symbionts, Wigglesworthia spp. in tsetse flies and Rhodococcus spp. (e.g. R. rhodnii, R. triatomae and R. corybacteriodes) in triatomine bugs contribute to metabolism through synthesis of B complex vitamins that are deficient in blood diets [11,12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call