Abstract

Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3–6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.

Highlights

  • Chikungunya virus (CHIKV) is an emerging alphavirus in the Togaviridae family and is transmitted by Aedes species mosquitoes

  • Previous studies in mice and nonhuman primates (NHPs) have often neglected the mosquito vector, leading to variable viremias and infection of tissues primarily at the sites of CHIKV injection. This is the first study to demonstrate systemic CHIKV infection caused by infected mosquito bites in humanized laboratory mice

  • Disease seen with this humanized mouse model mimics human clinical signs and symptoms, with signs of inflammation in muscle and joints due to viral replication. This humanized mouse model provides a basis for assessing human CHIKV pathogenesis, prophylaxis, and treatment, under natural conditions of infection

Read more

Summary

Introduction

Chikungunya virus (CHIKV) is an emerging alphavirus in the Togaviridae family and is transmitted by Aedes species mosquitoes (usually Ae. aegypti and Ae. albopictus). Symptoms of CHIKV infection include fever, headache, muscle ache, rash, and debilitating joint disease [8]. Most patients recover from CHIKV without recurrent acute infections, 50–95% of individuals can develop chronic joint symptoms lasting for months after the initial acute infection [9,10,11,12,13]. Most CHIKV infections are not life threatening, but severe infection can occur in immunodeficient individuals, such as neonates (infected during or prior to birth) and older individuals with comorbidities (diabetes mellitus, liver disease, obesity, or hypertension) [14,15,16,17,18,19]. Prevention of human CHIKV cases through mosquito control has been used in the United States (e.g. Florida); success with this method has not yet been documented [23]. There are no licensed vaccines or treatments for CHIKV, some are in development [24]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.