Abstract

Multi-omics data, i.e. genomics, epigenomics, transcriptomics, proteomics, characterize cellular complex signaling systems from multi-level and multi-view and provide a holistic view of complex cellular signaling pathways. However, it remains challenging to integrate and interpret multi-omics data for mining critical biomarkers. Graph AI models have been widely used to analyze graph-structure datasets, and are ideal for integrative multi-omics data analysis because they can naturally integrate and represent multi-omics data as a biologically meaningful multi-level signaling graph and interpret multi-omics data via graph node and edge ranking analysis. Nevertheless, it is nontrivial for graph-AI model developers to pre-analyze multi-omics data and convert the data into biologically meaningful graphs, which can be directly fed into graph-AI models. To resolve this challenge, we developed mosGraphGen (multi-omics signaling graph generator), generating Multi-omics Signaling graphs (mos-graph) of individual samples by mapping multi-omics data onto a biologically meaningful multi-level background signaling network with data normalization by aggregating measurements and aligning to the reference genome. With mosGraphGen, AI model developers can directly apply and evaluate their models using these mos-graphs. In the results, mosGraphGen was used and illustrated using two widely used multi-omics datasets of The Cancer Genome Atlas (TCGA) and Alzheimer's disease (AD) samples. The code of mosGraphGen is open-source and publicly available via GitHub: https://github.com/FuhaiLiAiLab/mosGraphGen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.