Abstract

The proliferation of mobile devices coupled with Internet access is generating a tremendous amount of highly personal and sensitive data. Applications such as location-based services and quantified self harness such data to bring meaningful context to users’ behavior. As social applications are becoming prevalent, there is a trend for users to share their mobile data. The nature of online social networking poses new challenges for controlling access to private data, as compared to traditional enterprise systems. First, the user may have a large number of friends, each associated with a unique access policy. Second, the access control policies must be dynamic and fine-grained, i.e. they are content-based, as opposed to all-or-nothing. In this paper, we investigate the challenges in sharing of mobile data in social applications. We design and evaluate a middleware running on Google App Engine, named Mosco, that manages and facilitates sharing of mobile data in a privacy-preserving manner. We use Mosco to develop a location sharing and a health monitoring application. Mosco helps shorten the development process. Finally, we perform benchmarking experiments with Mosco, the results of which indicate small overhead and high scalability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.