Abstract

AbstractRecent studies have suggested that the hydrologic connectivity of northern headwater catchments is likely controlled by antecedent moisture conditions and land cover patterns. A water storage model (EWS), based on water levels (WLs), specific yield (Sy) and surface elevation (SE) changes, was compared with a basic water budget of a small, boreal, patterned fen (13 ha) during the ice‐free period. Results showed that the EWS model reproduced well storage variations derived from the water budget. These results suggest that storage variations can be properly represented by the fluctuations of WLs when we consider the heterogeneous soil properties. However, storage deviations occurred at the daily scale and could be explained by a lack of information on water retention in unsaturated layers, canopy interceptions and preferential flows. Despite the significant impact of SE changes on the different peatland cover storage budgets (strings and lawns), using Sy mean values had a low impact on storage estimations. This can be explained by the large proportion of pools and high WLs throughout the fen. At the fen scale, high storage in the pools seemed to reduce the Sy difference between strings and lawns. The results of this study provide new insights about the complex hydrological behaviour of northern catchments and allow for conceiving new hydrological modelling perspectives. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.