Abstract

A major goal in postsynthesis evolutionary biology has been to better understand how complex interactions between traits drive movement along and facilitate the formation of distinct evolutionary pathways. I present analyses of a character matrix sampled across the haplorrhine skeleton that revealed several modules of characters displaying distinct patterns in macroevolutionary disparity. Comparison of these patterns to those in neurological development showed that early ape evolution was characterized by an intense regime of evolutionary and developmental flexibility. Shifting and reduced constraint in apes was met with episodic bursts in phenotypic innovation that built a wide array of functional diversity over a foundation of shared developmental and anatomical structure. Shifts in modularity drove dramatic evolutionary changes across the ape body plan in two distinct ways: (1) an episode of relaxed integration early in hominoid evolution coincided with bursts in evolutionary rate across multiple character suites; (2) the formation of two new trait modules along the branch leading to chimps and humans preceded rapid and dramatic evolutionary shifts in the carpus and pelvis. Changes to the structure of evolutionary mosaicism may correspond to enhanced evolvability that has a "preadaptive" effect by catalyzing later episodes of dramatic morphological remodeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call