Abstract

L-tryptophan (L-TRP) is an essential amino acid responsible for the establishment and maintenance of a positive nitrogen equilibrium in the nutrition of human beings. Therefore, it is vital to quantify the amount of L-tryptophan in our body. Herein, we report the MoS2/S@g-CN-modified glassy carbon electrode for the electrochemical detection of L-tryptophan (L-TRP). The MoS2/S@g-CN composite was successfully synthesized using an efficient and cost-effective hydrothermal method. The physical and chemical properties of the synthesized composite were analyzed using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray analysis (EDX). The crystallite size of the composite was calculated as 39.4 nm, with porous balls of MoS2 decorated over the S@g-CN surface. The XPS spectrum confirmed the presence of Mo, S, O, C, and N elements in the sample. The synthesized nanocomposite was further used to modify the glassy carbon (GC) electrode (MoS2/S@g-CN/GC). This MoS2/S@g-CN/GC was used for the electrochemical detection of L-TRP using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. For the purpose of comparison, the effects of the scanning rate and the concentration of L-TRP on the current response for the bare GC, S@g-CN/GC, MoS2/GC, and MoS2/S@g-CN/GC were studied in detail. The MoS2/S@g-CN-modified GC electrode exhibited a rational limit of detection (LoD) of 0.03 µM and a sensitivity of 1.74 µA/ µMcm2, with excellent stability, efficient repeatability, and high selectivity for L-TRP detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.