Abstract

Exploring multifunctional electrocatalysts is crucial for the development of energy conversion and storage equipments, such as fuel cells, water splitting devices and zinc-air batteries. Herein, we provide a rational design whereby the cobalt phosphide particles are introduced into molybdenum sulfide nanosheets to form a heterostructure (MoS2||CoP) through the ultrasonic method and calcination. Subsequently, N, P-doped carbon (NPC) is obtained synchronously. The as-prepared MoS2||CoP/NPC demonstrates highly effective multifunctional catalytic performance for oxygen evolution and hydrogen evolution reaction at lower overpotential, as well as oxygen reduction reaction at high half-wave potential. What this reveals is higher power density and superior stability in zinc-air battery. The excellent electrocatalytic activity of MoS2||CoP/NPC may be attributed to the presence of the MoS2||CoP heterostructure, as well as N, P-doped carbon coupled with a high percentage of pyridinic-N. This work proposes a novel and facile strategy to prepare the heterostructure compound and serves as a good reference for constructing efficient and low-cost electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.