Abstract
Due to continuous rise of demand for powerful energy sources for portable applications, high energy density and efficiency rechargeable batteries are under constant development. Currently, the most widely used power source for such applications is rechargeable lithium-ion batteries (LIBs). To increase the energy density, rate capability and cyclability of LIBs, alternative anode materials, such as MoS2, are under intensive investigation. The layered structure of MoS2 resembles graphite, and its theoretical specific capacity is about twice higher than that of graphite (670 mAh g-1 against 372 mAh g-1) due to its higher interlayer spacing (∼0.6 nm) for a Li-ion intercalation. In this work MoS2 nanopowder (MoS2-NP), prepared by self-propagating high-temperature synthesis (SHS), is used as an anode material (MoS2/C composition) for LIBs, and its electrochemical properties were analyzed. The MoS2-NP anode exhibited the initial charge capacity of 567 mAh g-1 at a current density of 50 mAh g-1. This performance will be improved by introduction of MoS2-NP into various carbon-containing composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.