Abstract

Several applications of two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) in nanoelectronic devices require the deposition of ultrathin pinhole free high-κ dielectric films on 2D TMDs. However, deposition of nm-thin high-κ dielectric films on 2D TMDs remains challenging due to the inert TMD surface. Here, we demonstrate that the surface of a synthetic polycrystalline 2D MoS2 film is functionalized with SiO2 to enable the atomic layer deposition (ALD) of thin and continuous Al2O3 and HfO2 layers. The origins of nucleation, the growth mode, and layer coalescence process have been investigated by complementary physical characterization techniques, which can determine the chemical bonds, absolute amount, and surface coverage of the deposited material. SiO2 is prepared by oxidizing physical vapor deposited Si in air. The surface hydrophilicity of MoS2 significantly increases after SiO2 functionalization owing to the presence of surface hydroxyl groups. SiO2 layers with a Si content of...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call