Abstract

Charge buildup in irradiated MOS devices is significantly more severe at low temperatures than at room temperature. Approaches for counteracting this problem are considered in this paper, including: (1) careful selection of the applied field; (2) ion implantation of the oxide; (3) use of a thin oxide. Experimental and analytical results are presented and it is demonstrated that the applied field dependence of flatband voltage shift in MOS capacitors irradiated at 77°K can be accounted for in terms of the field dependence of electron yield and the transport of holes at high fields. Analysis of ion implantation effects indicates that a significant improvement in radiation tolerance should be achievable by this method. A simultaneous consideration of the effects of oxide thickness and applied field on charge buildup in an unimplanted oxide suggests that reducing the thickness to ?500 A° will largely eliminate low temperature problems in a steady-state ionizing radiation environment as long as the applied voltage is ? 10V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.