Abstract

The expression C/sub FB/=C/sub ox/*( epsilon /sub si//L/sub D/)/(C/sub ox/+( epsilon /sub si//L/sub D/)) (where L/sub D/ is the Debye length), commonly used for the flatband capacitance of the MOS structure, is invalid in the temperature range below 100 K. Consequently, significant error may be encountered when the flatband capacitance method is used to extract the flatband voltage, V/sub FB/, which is of considerable interest for both the modeling and characterization of MOS devices. To extend this method to low-temperature CMOS applications one has to use a more general model that can be obtained by applying Fermi-Dirac statistics and taking into account the impurity freeze-out effect. It is shown that when the temperature dependence of V/sub FB/ is extracted using this approach, the experimental data for n/sup +/ polysilicon gate MOS capacitors are in good agreement with a simple method.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.