Abstract

The existence of colorectal cancer stem-like cells (CSC) is responsible for the failure of current treatments against colorectal cancer. Therefore, novel therapies need be developed to target CSCs. Some natural agents, including morusin have been proposed as possible candidates for this purpose. Morusin has been shown to exert antitumor effects. In the present study, it is demonstrated that morusin exerts antitumor effects on colorectal CSCs (CCSCs). The viability of human CCSCs was enhanced when the CCSCs formed spheroids in a serum-free and non-adhesive floating culture system. HCT116 sphere cells exhibited an increased proliferative capacity and a higher expression of stemness markers [octamer-binding transcription factor 4 (Oct4), Sox2 and Nanog]. Morusin inhibited the development of cancer spheroids and suppressed the growth of sphere cells via the induction of cell cycle arrest. Similarly, morusin decreased the expression levels of the stemness markers, Nanog and Oct4. The data partially revealed the molecular mechanisms involved: β-catenin signaling maintains the growth of CSCs and directly modulates the expression of Nanog and Oct4. Morusin suppressed the activity of β-catenin signaling via the inactivation of Akt; the executive β-catenin/TCF4 complex and the downstream targets, c-Myc, survivin and cyclin D1, were also downregulated. Moreover, the morusin-induced inactivation of Akt also increased the expression of p21Cip1/WAF1 and p27Kip, which can block the cell cycle by interacting with cyclin-dependent kinase (CDK) complexes. On the whole, the present study demonstrates that morusin inhibited the growth of colorectal cancer sphere cells, which were enriched with CCSCs via the inactivation of the Akt pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.