Abstract

Strongly fluorescent hydrophilic carbon dots (CDs) were synthesized through a one-step hydrothermal route using polysaccharide-rich Morus nigra fruit as the carbon source. These Morus nigra CDs (M-CDs) were extensively characterized using various analytical techniques to determine their structural and optical properties. The as-synthesized M-CDs were determined to be monodispersed with a mean diameter of 4.5 nm. Aqueous M-CD dispersions are brownish-yellow in color in daylight and emit bright cyan-blue light upon exposure to ultraviolet light. The M-CDs exhibit typical excitation-dependent emission behavior, with a high quantum yield of 24%. The analytical data show that the as-synthesized M-CDs exhibit strong fluorescence (FLR) and are very optically stable. Hence, the as-synthesized M-CDs are expected to use as fluorescent sensors for the highly selective and sensitive detection of Fe3+ ions by the fluorescence quenching mechanism. The quenching rate was linearly dependent on Fe3+ concentration, with a Fe3+ detection limit of 0.47 μM and a 5–30 µm detection range. Moreover, human colon cancer (HTC-116) cells were stained with the prepared M-CDs for 12 and 24 h for cell viability and microscopic analyses. The M-CDs-conjugated HTC-116 cells were brightly multicolor illuminated, emitting blue, green, and red light when excited through 405-, 488-, and 555-nm filters with distinct excitation ranges, respectively. This study provides a new route for the large-scale synthesis of highly fluorescent CDs for diverse applications using green sources and one-step hydrothermal carbonization procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call