Abstract
Approximate set membership data structures (ASMDSs) are ubiquitous in computing. They trade a tunable, often small, error rate ( ϵ ) for large space savings. The canonical ASMDS is the Bloom filter, which supports lookups and insertions but not deletions in its simplest form. Cuckoo filters (CFs), a recently proposed class of ASMDSs, add deletion support and often use fewer bits per item for equal ϵ . This work introduces the Morton filter (MF), a novel AS-MDS that introduces several key improvements to CFs. Like CFs, MFs support lookups, insertions, and deletions, but improve their respective throughputs by 1.3x to 2.5x, 0.9x to 15.5x, and 1.3x to 1.6x. MFs achieve these improvements by (1) introducing a compressed format that permits a logically sparse filter to be stored compactly in memory, (2) leveraging succinct embedded metadata to prune unnecessary memory accesses, and (3) heavily biasing insertions to use a single hash function. With these optimizations, lookups, insertions, and deletions often only require accessing a single hardware cache line from the filter. These improvements are not at a loss in space efficiency, as MFs typically use comparable to slightly less space than CFs for the same epsis; .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.