Abstract
We develop a flexible binary choice model for mortgage default decisions that incorporates neighborhood effects in the disturbances. The main advantage of the model lies in its performance in providing improved estimates of the probability of default for risky mortgage loans. In addition, it can be applied to portfolios with a high number of loans. Assuming mortgage decisions with spatially dependent disturbances, the proposed approach uses the generalized extreme value distribution to flexibly model the error terms. To estimate the model on a large sample size, we use a variant of the Geweke-Hajivassiliou-Keane algorithm. We apply the proposed model and its competitors to a large dataset on almost 300,000 mortgages in Clark County, which includes Las Vegas, over 2009–2010. The results show that our proposal greatly improves the predictive accuracy of identifying loans that will default. Moreover, the competitor models underestimate credit Value at Risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.