Abstract

Pore-scale models are becoming increasingly useful as predictive tools for modeling flow and transport in porous media. These models can accurately represent the 3D pore-structure of real media. Currently first-principles modeling methods are being employed for obtaining qualitative and quantitative behavior. Generally, artificial, simple boundary conditions are imposed on a model that is used as a stand-alone tool for extracting macroscopic parameters. However, realistic boundary conditions, reflecting flow and transport in surrounding media, may be necessary for behavior that occurs over larger length scales or including pore-scale models in a multiscale setting. Here, pore-scale network models are coupled to adjacent media (additional pore-scale or continuum-scale models) using mortars. Mortars are 2D finite-element spaces employed to couple independent subdomains by enforcing continuity of pressure and flux at shared boundary interfaces. While mortars have been used in the past to couple subdomains of different models, physics, and meshes, they are extended here for the first time to pore-scale models. The approach is demonstrated by modeling single-phase flow in coupled pore-scale models, but the methodology can be utilized to model dynamic processes and perform multiscale modeling in 3D continuum simulators for flow and transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.