Abstract

Adult bed bugs were exposed to the sublethal temperatures 34.0°C, 35.5°C, 37.0°C, 38.5°C, or 40.0°C for 3, 6, or 9 days. The two uppermost temperatures induced 100% mortality within 9 and 2 days, respectively, whereas 34.0°C had no observable effect. The intermediate temperatures interacted with time to induce a limited level of mortality but had distinct effects on fecundity, reflected by decreases in the number of eggs produced and hatching success. Adult fecundity remained low for up to 40 days after heat exposure, and the time until fertility was restored correlated with the temperature-sum experienced during heat exposure. Three or 6 days of parental exposure to 38.5°C significantly lowered their offspring’s feeding and moulting ability, which consequently led to a failure to continue beyond the third instar. Eggs that were deposited at 22.0°C before being exposed to 37.0°C for 3 or 6 days died, whereas eggs that were exposed to lower temperatures were not significantly affected. Eggs that were deposited during heat treatment exhibited high levels of mortality also at 34.0°C and 35.5°C. The observed negative effects of temperatures between 34.0°C and 40.0°C may be utilized in pest management, and sublethal temperature exposure ought to be further investigated as an additional tool to decimate or potentially eradicate bed bug populations. The effect of parental heat exposure on progeny demonstrates the importance of including maternal considerations when studying bed bug environmental stress reactions.

Highlights

  • Bed bugs, Cimex lectularius (Hemiptera: Cimicidae), have made a considerable comeback as a nuisance pest over the last 15 years [1]

  • The present study showed that sublethal temperatures, well below those that are traditionally used in bed bug control, can be detrimental to essential life history traits

  • Eggs have previously been found to endure longer than adults when exposed to upper temperature extremes for a short time [10], but our observations indicate that the eggs experienced higher mortality than adults at long exposure to sublethal temperatures

Read more

Summary

Introduction

Cimex lectularius (Hemiptera: Cimicidae), have made a considerable comeback as a nuisance pest over the last 15 years [1]. These ectoparasites are blood-feeders on humans and induce both negative physical and mental reactions [2,3]. Bed bugs have been shown to harbour Trypanosoma cruzi to potentially transmit Chagas disease [4]. Their resurgence is based on pesticide resistance, increased globalization, and insufficient knowledge of necessary actions to prevent and control infestations [5]. PLOS ONE | DOI:10.1371/journal.pone.0127555 May 21, 2015

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.