Abstract

COVID-19 is a novel coronavirus that spread around the globe with the initial reports coming from Wuhan, China, turned into a pandemic and caused enormous casualties. Various countries have faced multiple COVID spikes which put the medical infrastructure of these countries under immense pressure with third-world countries being hit the hardest. It can be thus concluded that determining the likeliness of death of a patient helps in avoiding fatalities which inspired the authors to research the topic. There are various ways to approach the problem such as past medical records, chest X-rays, CT scans, and blood biomarkers. Since blood biomarkers are most easily available in emergency scenarios, blood biomarkers were used as the features for the model. The data was first imputed and the training data was oversampled to avoid class imbalance in the model training. The model is composed of a voting classifier that takes in outputs from multiple classifiers. The model was then compared to base models such as Random Forest, XGBoost, and Extra Trees Classifier on multiple evaluation criteria. The F1 score was the concerned evaluation criterion as it maximizes the use of the medical infrastructure with the minimum possible casualties by maximizing true positives and minimizing false negatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.