Abstract

BackgroundEscherichia coli is the most common cause of bloodstream infections (BSIs) and mortality is an important aspect of burden of disease. Using a multinational population-based cohort of E. coli BSIs, our objectives were to evaluate 30-day case fatality risk and mortality rate, and determine factors associated with each.MethodsDuring 2014–2018, we identified 30-day deaths from all incident E. coli BSIs from surveillance nationally in Finland, and regionally in Sweden (Skaraborg) and Canada (Calgary, Sherbrooke, western interior). We used a multivariable logistic regression model to estimate factors associated with 30-day case fatality risk. The explanatory variables considered for inclusion were year (2014–2018), region (five areas), age (< 70-years-old, ≥70-years-old), sex (female, male), third-generation cephalosporin (3GC) resistance (susceptible, resistant), and location of onset (community-onset, hospital-onset). The European Union 28-country 2018 population was used to directly age and sex standardize mortality rates. We used a multivariable Poisson model to estimate factors associated with mortality rate, and year, region, age and sex were considered for inclusion.ResultsFrom 38.7 million person-years of surveillance, we identified 2961 30-day deaths in 30,923 incident E. coli BSIs. The overall 30-day case fatality risk was 9.6% (2961/30923). Calgary, Skaraborg, and western interior had significantly increased odds of 30-day mortality compared to Finland. Hospital-onset and 3GC-resistant E. coli BSIs had significantly increased odds of mortality compared to community-onset and 3GC-susceptible. The significant association between age and odds of mortality varied with sex, and contrasts were used to interpret this interaction relationship. The overall standardized 30-day mortality rate was 8.5 deaths/100,000 person-years. Sherbrooke had a significantly lower 30-day mortality rate compared to Finland. Patients that were either ≥70-years-old or male both experienced significantly higher mortality rates than those < 70-years-old or female.ConclusionsIn our study populations, region, age, and sex were significantly associated with both 30-day case fatality risk and mortality rate. Additionally, 3GC resistance and location of onset were significantly associated with 30-day case fatality risk. Escherichia coli BSIs caused a considerable burden of disease from 30-day mortality. When analyzing population-based mortality data, it is important to explore mortality through two lenses, mortality rate and case fatality risk.

Highlights

  • Escherichia coli is the most common cause of bloodstream infections (BSIs) and mortality is an important aspect of burden of disease

  • We found 11.4% (336/2961) of the E. coli BSIs that resulted in 30-day deaths were resistant to Third-generation cephalosporin (3GC) and this ranged from 3.5% (5/142) in Skaraborg to 24.2% (109/450) in Calgary

  • Most of the E. coli BSIs that resulted in 30-day deaths were community-onset E. coli BSIs (67.1%, 1987/2961); this proportion was lowest in Finland (65.4%, 1472/2252) and highest in Skaraborg (78.2%, 111/142)

Read more

Summary

Introduction

Escherichia coli is the most common cause of bloodstream infections (BSIs) and mortality is an important aspect of burden of disease. Using a multinational population-based cohort of E. coli BSIs, our objectives were to evaluate 30-day case fatality risk and mortality rate, and determine factors associated with each. Two general approaches for analyzing mortality data from population-based studies include evaluation of mortality rates and case fatality risks, which provide distinct yet complementary results [3, 5]. A small number of published population-based studies have reported mortality data for E. coli BSIs, they did not all use the same definition of mortality [1, 6,7,8,9,10,11]. Mortality rates for E. coli BSIs were only reported by three studies [3] (in-hospital mortality rate of 2.9 deaths/100,000 person-years, and 30-day mortality rates of 7 and 10.3 deaths/100,000 person-years) [6, 10, 11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call