Abstract
BackgroundThe probability of being killed by external factors (extrinsic mortality) should influence how individuals allocate limited resources to the competing processes of growth and reproduction. Increased extrinsic mortality should select for decreased allocation to growth and for increased reproductive effort. This study presents perhaps the first clear cross-species test of this hypothesis, capitalizing on the unique properties offered by a diverse guild of parasitic castrators (body snatchers). I quantify growth, reproductive effort, and expected extrinsic mortality for several species that, despite being different species, use the same species' phenotype for growth and survival. These are eight trematode parasitic castrators—the individuals of which infect and take over the bodies of the same host species—and their uninfected host, the California horn snail.ResultsAs predicted, across species, growth decreased with increased extrinsic mortality, while reproductive effort increased with increased extrinsic mortality. The trematode parasitic castrator species (operating stolen host bodies) that were more likely to be killed by dominant species allocated less to growth and relatively more to current reproduction than did species with greater life expectancies. Both genders of uninfected snails fit into the patterns observed for the parasitic castrator species, allocating as much to growth and to current reproduction as expected given their probability of reproductive death (castration by trematode parasites). Additionally, species differences appeared to represent species-specific adaptations, not general plastic responses to local mortality risk.ConclusionsBroadly, this research illustrates that parasitic castrator guilds can allow unique comparative tests discerning the forces promoting adaptive evolution. The specific findings of this study support the hypothesis that extrinsic mortality influences species differences in growth and reproduction.
Highlights
The probability of being killed by external factors should influence how individuals allocate limited resources to the competing processes of growth and reproduction
The trematode parasitic castrator species whose individuals were more likely to die from dominant species allocated less to growth and more to reproduction than did species with greater life expectancies
Broadly, this study illustrates that speciose guilds of parasitic castrators may allow uniquely powerful comparative tests concerning the forces promoting adaptive evolution
Summary
The probability of being killed by external factors (extrinsic mortality) should influence how individuals allocate limited resources to the competing processes of growth and reproduction. I quantify growth, reproductive effort, and expected extrinsic mortality for several species that, despite being different species, use the same species' phenotype for growth and survival. These are eight trematode parasitic castrators—the individuals of which infect and take over the bodies of the same host species—and their uninfected host, the California horn snail. Investment in growth theoretically diverts resources from current reproduction, resulting in an allocation trade-off Theory indicates that this trade-off is strongly influenced by extrinsic mortality (the probability of being killed by external factors) [e.g., [4,5,6,7,8,9]].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.