Abstract

For a dynamical system X on a compact differentiable manifold M and for the dynamical system X(ρ) induced from X by a covering map \({\rho \, : \, \widetilde{M}\, \rightarrow \, M}\), we develop algebraic topology methods for estimating the lower bounds on the number of codimension-1 surfaces (i.e., on the number of index-1 equilibria of flows and their stable manifolds) on the boundary of regions of stability on \({\widetilde{M}}\). We also develop methods for estimating the number of equilibria on the boundaries of stability regions of noncompact manifolds with very general assumptions. Our methods allow us to obtain results for noncompact manifolds in cases when Morse–Smale approach does not work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.