Abstract
AbstractAlthough there is no doubt that multi-parameter persistent homology is a useful tool to analyze multi-variate data, efficient ways to compute these modules are still lacking in the available topological data analysis toolboxes. Other issues, such as interpretation and visualization of the output, remain difficult to solve. Software visualizing multi-parameter persistence diagrams is currently only available for 2-dimensional persistence modules. One of the simplest invariants for a multi-parameter persistence module is its rank invariant, defined as the function that counts the number of linearly independent homology classes that live in the filtration through a given pair of values of the multi-parameter. We propose a step towards interpretation and visualization of the rank invariant for persistence modules for any given number of parameters. We show how discrete Morse theory may be used to compute the rank invariant, proving that it is completely determined by its values at points whose coordinates are critical with respect to a discrete Morse gradient vector field. These critical points partition the set of all lines of positive slope in the parameter space into equivalence classes such that the rank invariant along lines in the same class are also equivalent. We show that we can deduce the persistence diagrams for all lines in a given class from the persistence diagram of a representative line in that class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.