Abstract

Using inf-regularization methods, we prove that Morse inequalities hold for some lower-C2 functions. For this purpose, we first recall some properties of the class of lower-C2 functions and of their Moreau-Yosida approximations. Then, we establish, under some qualification conditions on the critical points, that it is possible to define a “Morse” index for a lower-C2 functionf. This index is preserved by the Moreau-Yosida approximation process. We prove in particular that the Moreau-Yosida approximations are twice continuolusly differentiable around such a critical point which is shown to be a strict local minimum of the restriction off and of its approximations to some affine space. In a last step, Morse inequalities are written for Moreau-Yosida approximations and with the aid of deformation retractions we prove that these inequalities also hold for some lower-C2 functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.