Abstract

The gradient flow of a Morse function on a smooth closed manifold generates, under suitable transversality assumptions, the Morse–Smale–Witten complex. The associated Morse homology is an invariant for the manifold, and equals the singular homology, which yields the classical Morse relations. In this paper we define Morse–Conley–Floer homology, which is an analogous homology theory for isolated invariant sets of smooth, not necessarily gradient-like, flows. We prove invariance properties of the Morse–Conley–Floer homology, and show how it gives rise to the Morse–Conley relations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.