Abstract

Morroniside can prevent myocardial injury caused by ischemia and hypoxia, which can be used to treat acute myocardial infarction (AMI). Hypoxia can cause apoptosis and autophagic death of cardiomyocytes. Morroniside has the ability to inhibit apoptosis and autophagy. However, the relationship between Morroniside-protected cardiomyocytes and two forms of death is unclear. The effects of Morroniside on the proliferation, apoptosis level, and autophagic activity of rat cardiomyocyte line H9c2 under hypoxia were first observed. Next, the roles of Morroniside in the phosphorylation of JNK and BCL2, BCL2-Beclin1, and BCL2-Bax complexes as well as mitochondrial membrane potential in H9c2 cells were evaluated upon hypoxia. Finally, the significance of BCL2 or JNK in Morroniside-regulated autophagy, apoptosis, and proliferation in H9c2 cells was assessed by combining Morroniside and BCL2 competitive inhibitor (ABT-737) or JNK activator (Anisomycin). Our results showed that hypoxia promoted autophagy and apoptosis of H9c2 cells, and inhibited their proliferation. However, Morroniside could block the effect of hypoxia on H9c2 cells. In addition, Morroniside could inhibit JNK phosphorylation, BCL2 phosphorylation at the Ser70 and Ser87 sites, and the dissociation of BCL2-Beclin1 and BCL2-Bax complexes in H9c2 cells upon hypoxia. Moreover, the reduction of mitochondrial membrane potential in H9c2 cells caused by hypoxia was improved by Morroniside administration. Importantly, the inhibited autophagy, apoptosis, and promoted proliferation in H9c2 cells by Morroniside were reversed by the application of ABT-737 or Anisomycin. Overall, Morroniside inhibits Beclin1-dependent autophagic death and Bax-dependent apoptosis via JNK-mediated BCL2 phosphorylation, thereby improving the survival of cardiomyocytes under hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call