Abstract
Inflammation is closely associated with the pathogenesis of various ocular diseases. Uveitis is a condition characterized by the inflammation of the uvea and ocular tissues that causes extreme pain, decreases visual acuity, and may eventually lead to blindness. The pharmacological functions of morroniside, isolated from Cornus officinalis, are multifarious. Morroniside exerts various therapeutic effects, e.g., it ameliorates inflammation. However, the specific anti-inflammatory effect of morroniside on lipopolysaccharide-induced uveitis has not been reported widely. In this study, we investigated the anti-inflammatory effect of morroniside on uveitis in mice. An endotoxin-induced uveitis (EIU) mouse model was constructed and treated with morroniside. The inflammatory response was observed using slit lamp microscopy, and histopathological changes were observed by hematoxylin-eosin staining. The cell count in the aqueous humor was measured using a hemocytometer. The concentrations of TNF-α, IL-6, and IL-1β in the ciliary body and retina were measured using ELISA kits. The expression of iNOS and Arg-1 in the ciliary body and retina was measured by immunofluorescence costaining, and western blotting was performed to measure the protein expression of JAK2, p-JAK2, STAT3, and p-STAT3 in the ciliary body and retina. Morroniside effectively ameliorated the inflammatory response in EIU mice. Furthermore, morroniside significantly reduced the concentrations of IL-1β, IL-6, and TNF-α in the ciliary body and retina. Morroniside treatment significantly reduced the expression of iNOS in the ciliary body and retinal tissues. It also significantly inhibited p-JAK2 and p-STAT3 expression and promoted Arg-1 expression. In addition, morroniside boosted the effect of JAK inhibitors on the above indices. Collectively, these findings suggest that morroniside may protect against LPS-induced inflammation in uveitis by promoting M2 polarization through the inhibition of the JAK/STAT pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.