Abstract

Soft robot design is an intricate field with unique challenges due to its complex and vast search space. In the past literature, evolutionary computation algorithms, including novel probabilistic generative models (PGMs), have shown potential in this realm. However, these methods are sample inefficient and predominantly focus on rigid robots in locomotion tasks, which limit their performance and application in robot design automation. In this work, we propose MorphVAE, an innovative PGM that incorporates a multi-task training scheme and a meticulously crafted sampling technique termed ``continuous natural selection'', aimed at bolstering sample efficiency. This method empowers us to gain insights from assessed samples across diverse tasks and temporal evolutionary stages, while simultaneously maintaining a delicate balance between optimization efficiency and biodiversity. Through extensive experiments in various locomotion and manipulation tasks, we substantiate the efficiency of MorphVAE in generating high-performing and diverse designs, surpassing the performance of competitive baselines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call