Abstract

Previous studies have documented a circadian cycle in juvenile hormone (JH) biosynthesis in the long-winged, flight-capable morph, but not in the short-winged flightless morph of the cricket Gryllus firmus. One rapid and reversible inhibitor of in vitro JH biosynthesis by the corpora allata (CA) in crickets is the neuropeptide Phe-Gly-Leu/Ile-amide type of allatostatins (ASTs). To investigate the possible role of allatostatin regulation of the morph-specific circadian cycle of JH production, the quantity of this type of AST in the nerves within the CA was determined by the density of anti-AST-immunostaining in confocal images using the Image J program. The density of immunostaining was inversely related to the rate of JH biosynthesis: Immunostaining in the CA was high and did not differ between morphs early in the photophase when the in vitro rate of JH biosynthesis is low and equivalent in the morphs. However, during the end of the photophase, when the rate of JH biosynthesis rises dramatically in the flight-capable morph, but not in the flightless morph, immunostaining was significantly lower in the flight-capable compared to the flightless morph. These results indicate that morph-specific differences in delivery of AST to the CA and its probable release likely regulate the morph-specific circadian pattern of JH biosynthesis. Also, the negative correlation between AST density and JH production provides evidence for predicting the periods of altered release of these rapid-acting paracine regulators of JH biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call