Abstract

Posterior communicating artery (PCoA) aneurysms frequently rupture in small size (<7 mm). The aim of the study is to demonstrate morphometric and hemodynamic analyses in ruptured and unruptured PCoA aneurysms to improve predictive accuracy for rupture. Geometrical models were reconstructed from rotational DSA images of 57 ruptured and 22 unruptured side-wall PCoA aneurysms, which were classified into four two-dimensional (2D) groups by a combination of H/D and H/S ratios (H: dome height, D: dome diameter, and S: semi-axis height). Surface area ratio (SAR) of low time-averaged wall shear stress (TAWSS, ≤4 dynes cm−2) and high oscillatory shear index (OSI, ≥0.15) were computed in aneurysms. We hypothesized that a two-step analysis method, i.e., one-dimensionally morphometric and hemodynamic analyses in each 2D group, can enhance accuracy of PCoA aneurysm rupture evaluation. There was the highest incidence of H/D > 1 and H/S ≤ 2 with the largest surface area and SAR-TAWSS, but the lowest incidence of H/D ≤ 1 and H/S > 2 with the smallest surface area and SAR-TAWSS in ruptured PCoA aneurysms. PCoA aneurysms of H/D > 1 and H/S ≤ 2 with surface area > 70 mm2, H/D ≤ 1 and H/S > 2 with neck diameter > 2.3 mm, H/D ≤ 1 and H/S ≤ 2 with aneurysmal height/parent diameter ratio > 1.0, and H/D > 1 and H/S > 2 with aneurysmal angle > 115° need special attention for clinical diagnosis and treatment. The study highlighted the importance of the two-step analysis method for clinical evaluation of PCoA aneurysm rupture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.