Abstract

ObjectivesOccipitocervical fusion (OCF) is an effective treatment for instability of occipitocervical junction (OCJ). The occipital condyle screw serves as a novel surgical technique for occipitocervical fixation. However, the intraoperative procedures for the occipital condyle screw technique have relied on surgeons’ experience, so the pool of surgeons who are able to perform this surgery safely is limited. The present study aims to evaluate the feasibility and safety of the occipital condyle screw technique using human cadavers and to provide image anatomy for clinical application basis.MethodsThe scientific study comprised 10 fresh‐frozen cadaveric specimens from the anatomy department of Qingdao University. Placement of the occipital condyle screws (3.5 mm diameter and 20.0 mm length) was performed in the 10 fresh‐frozen cadaveric specimens with intact occipitocervical junctions, respectively. Occipitocervical CT was performed for all specimens and the DICOM data was obtained. Occipitocervical CT three‐dimensional (3D) reconstruction was performed for the cadavers. Morphometric analysis was performed on the bilateral occipitocervical junction of 10 cadaveric specimens based on the 3D reconstruction CT images. Detailed morphometric measurements of the 20 occipital condyles screws were conducted including the average length of the screw trajectory, inside and upper tilting angles of screws, distance to the hypoglossal canal, and to the medial wall of occipital condyle.ResultsPlacement of the occipital condyle screws into the 20 occipital condyles of the 10 cadaveric specimens was performed successfully and the trajectory of implantation was satisfactory according to 3D CT reconstruction images, respectively. There was no obvious injury to the spinal cord, nerve root, and vertebral artery. The length of the bilateral screw trajectory was, respectively, 20.96 ± 0.91 mm (left) and 20.59 ± 0.77 mm (right) (t = 1.306, P > 0.05). The upper tilting angle of bilateral screws was, respectively, 11.24° ± 0.74° (left) and 11.11° ± 0.64° (right) (t = 0.681, P > 0.05). The inside tilting angle of bilateral screws was, respectively, 31.00° ± 1.32° (left) and 30.85° ± 1.27° (right) (t = 0.307, P > 0.05). The screw's distance to the bilateral hypoglossal canal was, respectively, 4.84 ± 0.54 mm (left) and 4.70 ± 0.54 mm (right) (t = 0.685, P > 0.05). The screw's distance to the medial wall of the bilateral occipital condyle was, respectively, 5.13 ± 0.77 mm (left) and 5.04 ± 0.71 mm (right) (t = 0.384, P > 0.05).ConclusionThe occipital condyle screw technique can serve as a feasible and safe treatment for instability of the occipitocervical junction with meticulous preoperative planning of the screw entry point and direction based on individual differences. Morphometric trajectory analysis is also an effective way to evaluate the surgical procedure.

Highlights

  • The most flexible section of the cervical spine is the occipital-C1–C2 complex, which is mainly responsible for flexion (21), extension (3.5), and axial rotation (23.3–38.8 per side)[1]

  • Detailed morphometric measurements of the 20 occipital condyles screws were conducted including the average length of the screw trajectory, inside and upper tilting angles of screws, distance to the hypoglossal canal, and to the medial wall of occipital condyle

  • Placement of the occipital condyle screws into the 20 occipital condyles of the 10 cadaveric specimens was performed successfully and the trajectory of implantation was satisfactory according to 3D CT reconstruction images, respectively

Read more

Summary

Introduction

The most flexible section of the cervical spine is the occipital-C1–C2 complex, which is mainly responsible for flexion (21), extension (3.5), and axial rotation (23.3–38.8 per side)[1]. Many important anatomic structures are adjacent to the occipital condyle: above it are the condyloid foramina and hypoglossal nerves, situated medially is the brain stem, posteriorly are the vertebral artery and the cervical nerve root and laterally are the emissary veins and the sigmoid sinus, while the retropharyngeal soft tissue is on the ventral side[2]. As a matter of fact, the hypoglossal canal that sits atop the occipital condyle is traditionally considered part of the occipital condyle. The mean distance from the hypoglossal canal to the inferior border of the occipital condyle is 11.5 mm[3]. Anatomical study indicates that spine surgeons are presented a challenge because of the unique anatomic and kinematic relationships of this region[5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call