Abstract
Many armored fish scale assemblies use geometric heterogeneity of subunits as a design parameter to provide tailored biomechanical flexibility while maintaining protection from external penetrative threats. This study analyzes the spatially varying shape of individual ganoid scales as a structural element in a biological system, the exoskeleton of the armored fish Polypterus senegalus (bichir). X-ray microcomputed tomography is used to generate digital 3D reconstructions of the mineralized scales. Landmark-based geometric morphometrics is used to measure the geometric variation among scales and to define a set of geometric parameters to describe shape variation. A formalism using continuum mechanical strain analysis is developed to quantify the spatial geometry change of the scales and illustrate the mechanisms of shape morphing between scales. Five scale geometry variants are defined (average, anterior, tail, ventral, and pectoral fin) and their functional implications are discussed in terms of the interscale mobility mechanisms that enable flexibility within the exoskeleton. The results suggest that shape variation in materials design, inspired by structural biological materials, can allow for tunable behavior in flexible composites made of segmented scale assemblies to achieve enhanced user mobility, custom fit, and flexibility around joints for a variety of protective applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.