Abstract

Rabbit cardiac myocytes remain quiescent for more than 1 month when cultured at low density. During this period, myofibrillar volume density declines sixfold as myofibrils are disassembled or degraded and are replaced by actin and alpha-actinin-positive, myosin-negative structures that resemble myofibrils but lack thick filaments. Such structures are termed minute myofibrils. The length of the sarcomeres in these altered myofibrils is significantly less than length values obtained from freshly isolated heart cells or from contracting myocytes. A number of high density cultures develop spontaneous, synchronous contraction during the second week of culture. Myofibrillar volume density is stabilized when beating begins, and no further decline is observed in the succeeding weeks of culture. Such contracting myocytes display myofibrils typical of normal heart with no visible evidence of minute myofibrils. The volume density of the transverse tubular system also declines significantly in both beating and nonbeating myocytes, and its reduction appears more closely correlated with cell spreading than with beating per se. No quantitative changes in volume density of mitochondria or sarcoplasmic reticulum could be documented, but the structural organization of the sarcoplasmic reticulum seems to be greatly influenced by the physiological state of the heart cell. The present observations document the importance of mechanical factors in regulating the integrity of the contractile apparatus in cardiac myocytes and emphasize the utility of the cultured heart cell to directly investigate structure-function relations in individual myocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.