Abstract

To understand the similarities and dissimilarities of a breed structure among different buffalo breeds of North India, it is essential to capture their morphometric variation, genetic diversity, and effective population size. In the present study, diversity among three important breeds, namely, Murrah, Nili-Ravi and Gojri were studied using a parallel approach of morphometric characterization and molecular diversity. Morphology was characterized using 13 biometric traits, and molecular diversity through a panel of 22 microsatellite DNA markers recommended by FAO, Advisory Group on Animal Genetic Diversity, for diversity studies in buffaloes. Canonical discriminate analysis of biometric traits revealed different clusters suggesting distinct genetic entities among the three studied populations. Analysis of molecular variance revealed 81.8% of genetic variance was found within breeds, while 18.2% of the genetic variation was found between breeds. Effective population sizes estimated based on linkage disequilibrium were 142, 75 and 556 in Gojri, Nili-Ravi and Murrah populations, respectively, indicated the presence of sufficient genetic variation and absence of intense selection among three breeds. The Bayesian approach of STRUCTURE analysis (at K = 3) assigned all populations into three clusters with a degree of genetic admixture in the Murrah and Nili-Ravi buffalo populations. Admixture analysis reveals introgression among Murrah and Nili-Ravi breeds while identified the Gojri as unique buffalo germplasm, indicating that there might be a common origin of Murrah and Nili-Ravi buffaloes. The study provides important insights on buffalo breeds of North India that could be utilized in designing an effective breeding strategy, with an appropriate choice of breeds for upgrading local non-descript buffaloes along with conservation of unique germplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.