Abstract

AimTo elucidate the morphological characteristics of spike-wave complexes (SWCs) causing myoclonic seizures (MS) in childhood-onset idiopathic myoclonic epilepsies. Subjects and MethodsThe subjects were 8 patients, including 4 with epilepsy with myoclonic-atonic seizures (EMAS), 3 with myoclonic epilepsy in infancy (MEI) and 1 with idiopathic unclassifiable myoclonic epilepsy. Morphometric parameters of the SWCs were compared between those with MS [SWC-MS (+)] and those without MS [SWC-MS (-)], and a correlation coefficient analysis was performed between the SWC parameters and the duration of myoclonic electromyogram (EMG) potentials. ResultsA total of 155 SWC-MS (+) (range: 7 ∼ 34) and 80 SWC-MS (-) (10 each as a control) were analyzed. Comparison of the parameters of the SWCs between SWC-MS (+) and SWC-MS (-) demonstrated that the depth and the width of the positive-sharp-components (PSC) in the SWC-MS (+) were significantly deeper in amplitude and longer in duration than those in the SWC-MS (-), respectively, in all 8 patients (P < 0.05), whereas the number of the polyphasic-multiple-spike-components (PMSC) and the height of negative-spike-components (NSC) were not significantly different in most of the patients, respectively. The depth and the width of PSC were also significantly correlated with the duration of myoclonic EMG potentials in all patients except one [depth of PSC (n = 7): r = 0.623 ∼ 0.888; width of PSC (n = 8): r = 0.676 ∼ 0.948, P < 0.05]. ConclusionsThis study revealed that the depth and width of PSC of the SWC are positively correlated with the MS intensity in childhood-onset idiopathic myoclonic epilepsies and are an important neurophysiological marker to generate MS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call