Abstract

Two methods were used to assess the heterogeneity of capillary supply to muscles of widely differing metabolic capacity and fibre size. Using the method of capillary domains (DOM; Hoofd et al., 1985) and the closest-individual method (CI; Kayar et al., 1981) radii of Kroghian cylinders (R) can be calculated, and the heterogeneity of their lognormal distribution represented by the logarithmic standard deviation (Log SD). Both methods yield similar values for mean R in a tissue. DOM is more direct and quicker than CI, and may be particularly useful in the analysis of capillary oxygen supply during functional hypertrophy and in muscle regeneration where a broad distribution of fibre areas may be found. Despite a 500-fold range of capillary density, to a minimum of 20 capillaries mm-2, heterogeneity of capillary supply was similar in all muscles, indicating a functionally homologous spatial distribution. The relationship between number of fibres overlapped by a capillary domain, and domain area has zero correlation in most tissues but shows a negative trend in fish fast muscle, reflecting hyperplastic and hypertrophic growth. Capillary/fibre ratio is inappropriate for sparse networks whereas the cumulative fraction of domains vs fibre area shows a strong correlation, suggesting that maximal oxygen supply to muscle fibres is not restricted to contiguous capillaries, but also involves those remote from the fibre surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.