Abstract

Changes in parietal cell membranous structures that accompany the onset of acid secretion were studied with electron microscopy using isolated gastric glands from rabbit. A stereological analysis was performed to quantitate the morphological changes occurring within 5 min following histamine stimulation. These changes were compared to the changes resulting from osmotic expansion of parietal cell components following addition of 1mm aminopyrine (AP) to glands incubated in medium containing 108mm K+ (high-K+). Morphometric analyses, together with measurements of glandular water content, indicated that parietal cells swell in high-K+ medium. Addition of 1mm AP to glands incubated in high-K+ medium resulted in massive distention of the secretory canaliculus but no difference was observed in the amount of tubulovesicular membrane or the relative size of these cytoplasmic structures. In the histamine-treated glands the parietal cells displayed a rapid loss of tubulovesicular membrane and a reciprocal increase in canalicular membrane. These morphological changes were complete long before a maximum level of acid formation was achieved. Taken together, these results indicate that; (i) the morphological change accompanying stimulation does not require acid formationper se; (ii) the site of acid secretion is the intracellular canaliculus and not the tubulovesicles; (iii) there is no preexisting actual or potential continuity between the tubulovesicular space and the canalicular space; and (iv) the AP-induced expansion of the canaliculus in high-K+ medium, while yielding some valuable information, is not an appropriate model for studying the normal stimulus-induced morphological transition, despite a superficial similarity of appearance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.