Abstract

Enhanced functionality of the nanostructure-based devices can be achieved by customizing the doping, thereby managing the electrical properties of the nanostructures. We have optimized the synthesis condition of the ZnO nanowires (NWs) using hot-walled pulsed laser deposition (HW-PLD) that features the facilitated kinetic energy control of the laser-ablated particles. The electrical properties of the NWs have been managed by doping control while maintaining the NW morphologies. 1, 3, and 5 wt.% Ga concentration in the NWs is evaluated directly with energy dispersive spectrometer (EDS), and the exciton peak shifts are measured with room temperature photoluminescence (PL) to find the correlation between the concentration and the shifts. n-type Ga-doping status has been verified with low temperature PL to find the donor-bound exciton peaks. As for the morphology diversification, we have acquired both zigzag-shaped NWs and nanohorns using the same HW-PLD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.