Abstract

Charge separation and recombination are key processes determining the performance of organic optoelectronic devices. Here we combine photoluminescence and photovoltaic characterization of organic solar cell devices with ultrafast multipulse photocurrent spectroscopy to investigate charge generation mechanisms in the organic photovoltaic devices based on a blend of an alternating polyquinoxaline copolymer with fullerene. The combined use of these techniques enables the determination of the contributions of geminate and bimolecular processes to the solar cell performance. We observe that charge separation is not a temperature-activated process in the studied materials. At the same time, the generation of free charges shows a clear external field and morphology dependence. This indicates that the critical step of charge separation involves the nonequilibrium state that is formed at early times after photoexcitation, when the polaronic localization is not yet complete. This work reveals new aspects of molecul...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.